PRAXIS ENGINEERING, LLC 205 ALLEN ST. KELSO, WA 98626 (360) 575-8348

January 23, 2024

Nisqually Tribe – Spec House G 12338 Squalli-Absch Road Olympia, WA 98513

Lateral analysis for a single story residence.

110 mph Ultimate Wind Speed, Exposure C, Seismic Zone – D1 1500 psf Assumed Minimum Soil Bearing Capacity Limiting Conditions and Warning

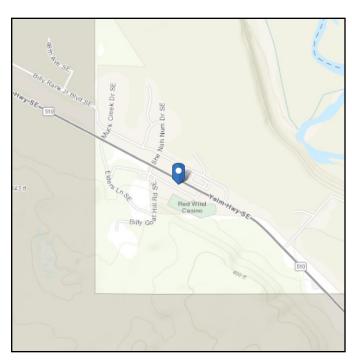
Professional engineering provided herein is based upon plans and information provided by client and is limited to attached documents only, unless otherwise noted in signed and sealed documents and/or plans provided by professional engineer. If changes are made to the attached elevations or floorplans, contact our office before construction begins. No liability is assigned to any unsigned or unstamped plan, specification, or documents.

For payment of a one-time fee, Praxis Engineering, LLC grants the owner and/or contractor, a limited license to use this analysis and design to construct one single house or structure. After the initial analysis and design is purchased, customers may obtain a wet stamped renewal sheet for a subsequent house or structure (if the same design conditions exist) by paying a reduced additional order fee.

ASCE Hazards Report

Address:

No Address at This Location


Standard: ASCE/SEI 7-16 Latitude:

Risk Category: || Longitude: -122.669395

Soil Class: D - Stiff Soil Elevation: 263.71501154583547 ft

(NAVD 88)

47.001324

Seismic

Site Soil Class: D - Stiff Soil

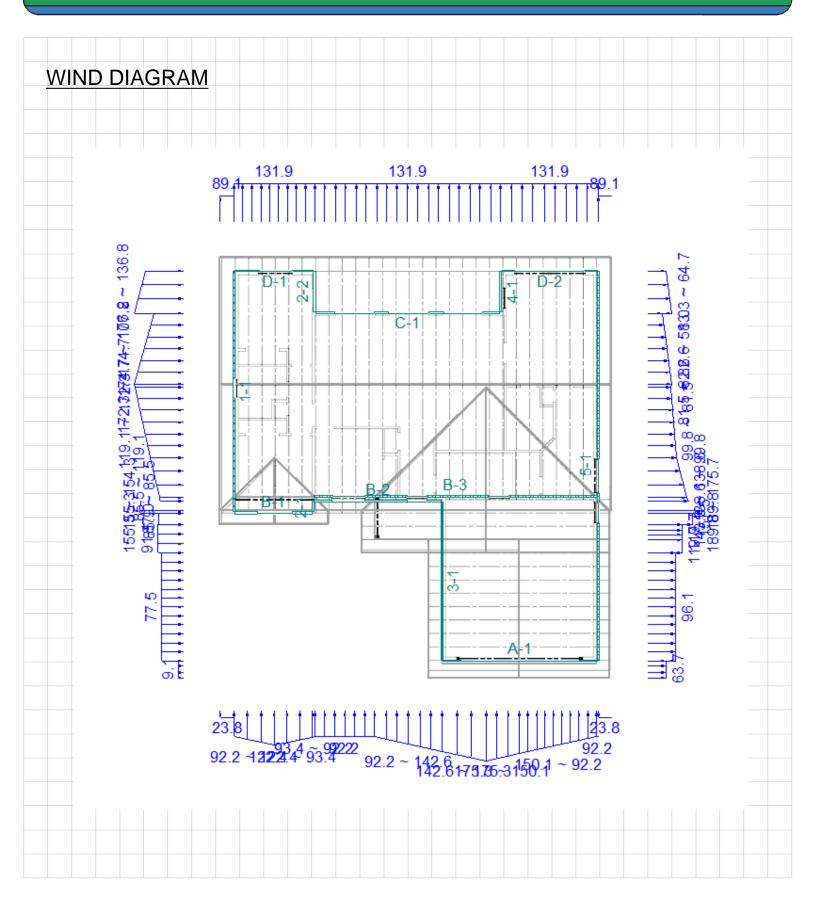
Results:

S _s :	1.333	S_{D1} :	N/A
S_1 :	0.481	T_L :	16
F _a :	1	PGA:	0.536
F_{ν} :	N/A	PGA _M :	0.59
S _{MS} :	1.333	F _{PGA} :	1.1
S _{M1} :	N/A	l _e :	1
S _{DS} :	0.888	C_v :	1.367

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Fri Jan 12 2024

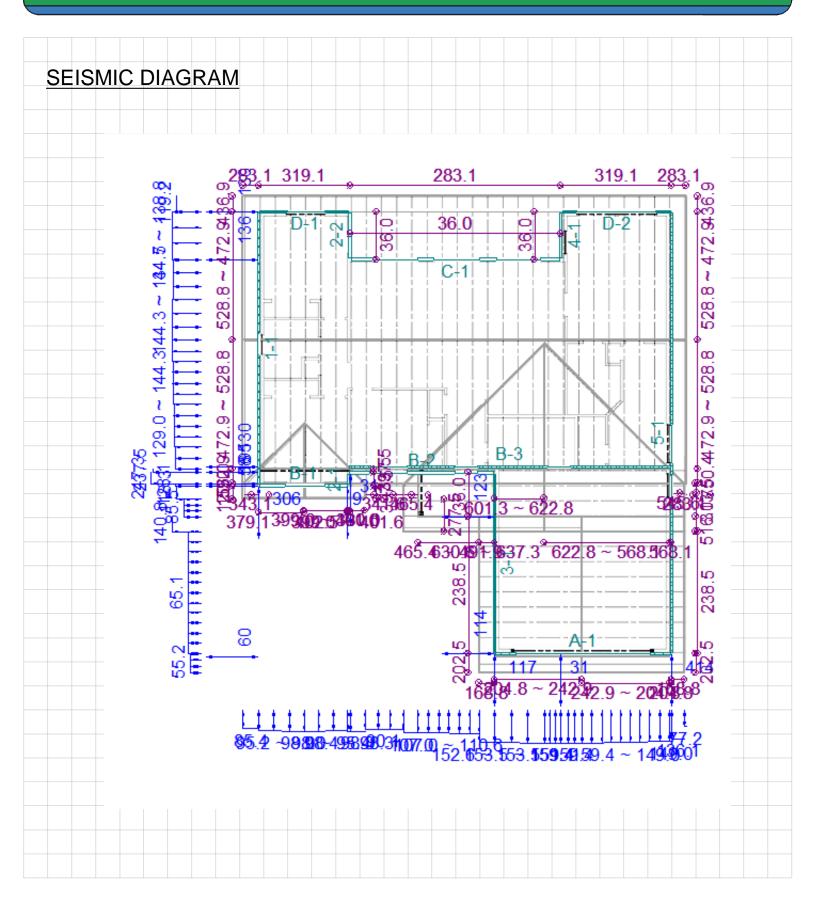
Date Source: USGS Seismic Design Maps


PROJECT NISQUALLY TRIBE SPEC PLAN G

ADDRESS 12338 SQUALLI-ABSCH RD, OLYMPIA, WA

DATE 1/18/2024

ENGR LB


PROJECT NISQUALLY TRIBE SPEC PLAN G

ADDRESS 12338 SQUALLI-ABSCH RD, OLYMPIA, WA

DATE 1/18/2024

ENGR LB

SOFTWARE FOR WOOD DESIGN

WoodWorks® Shearwalls 2023

Nisqually Spec G Lateral.wsw

Jan. 18, 2024 15:06:26

Project Information

COMPANY	AND	PRO.	JECT	INF	ORM	ATION
---------	-----	------	------	-----	-----	-------

Company	Project
PRAXIS ENGINEERING	-
205 ALLEN ST, KELSO, WA	

DESIGN SETTINGS

D	esign Code	W	/ind Standard		Seis	mic Standard				
IBC 2021	/AWC SDPWS 2021	ASCE 7-16 Dir	rectional (All h	eights)	ASCE 7-16					
	Load Co	mbinations		Buildin	Building Code Capacity Modification					
For Design (AS	D)	For Deflection (Stre	ngth)	Wind	i	Seismic				
0.70 Seismic	c + 0.60 Dead	1.00 Seismic +	0.90 Dead	1.00	1.00					
0.60 Wind	+ 0.60 Dead	1.00 Wind +	0.90 Dead							
	Service Condition	s and Load Duration		N	lax Shearwa	II Offset [ft]				
Duration	Temperature	Moistu	re Content	Plan	ı	Elevation				
Factor	Range	Fabrication	Service	(within s	tory)	(between stories)				
-	-	19% (<=19%)	10% (<=19%)	3.00)	-				
		Maximum	Height-to-width Rat	io						
Wo	od panels	Fiberboard	Lumber		Gypsum					
Blocked	Unblocked		Wind	Seismic	Blocked	Unblocked				
3.5	2.0	_	_		2.0	1.5				
	Ignore shear resist	ance contribution of			Forces bas	sed on				
W	all segments	Sei	ismic	Hold-dow	ns App	lied loads				
Side with i	nvalid aspect ratio	Any gypsum, lu	mber, fiberboard	Drag stru	its App	lied loads				
	She	arwall relative rigidity	: Wall capacity							
Non-identi	cal materials and constru	ction on the shearline	: Allowed, excep	t for material	type					
		Deflection Equation	: 3-term from SD	PWS 4.3-1						
	Drif	t limit for wind design	: 1 / 500 story	height						
		FTAO strap	: Continuous at	top of highest	opening a	nd bottom of lowes				

SITE INFORMATION

SITE INFORMATION										
	Wind		Seismic							
ASCE 7-16 Dire	ectional (All he	eights)	ASCE 7-16 12.8 Equivalent Lateral Force Procedure							
Design Wind Speed	110 mph		Risk Category Category II - All others							
Serviceability Wind Speed	100 mph		Structure Type	Regular						
Exposure	Exposure C		Building System	Bearing Wall						
Enclosure	Partially o	pen	Design Category	D						
Min Wind Loads: Walls	16 psf		Site Class	D						
Roofs	8 psf		Spectral Response Acceleration							
Topograp	hic Information [ft]		S1 : 0.480g Ss : 1.330g							
Shape	Height	Length	Fundamental Period	E-W	N-S					
_	_	-	T Used	0.133s	0.133s					
Site Location: -			Approximate Ta	0.133s	0.133s					
E	lev: Oft		Maximum T	0.186s	0.186s					
Rigid buildi	ng - Static ana	lysis	Response Factor R	6.50	6.50					
Case 2	E-W loads	N-S loads	Fa: 1.00	Fv: 1.8	2					
Eccentricity (%)	15	15								
Loaded at	75%									

Nisqually Spec G Lateral.wsw

Jan. 18, 2024 15:06:26

Structural Data

SHEATHING MATERIALS by WALL GROUP

	Sheathing									Fasteners					
Grp	Surf	Material	Ratng	Thick	GU	Ply	Or	Gvtv	Size	Type	RS	Eg	Fd	Bk	Notes
				in	in			lbs/in				in	in		
1	Ext	Struct Sh OSB	24/16	7/16	-	-	Vert	83500	8d	Common	Ν	4	12	Υ	2,3
2	Ext	Struct Sh OSB	24/16	7/16	-	-	Vert	83500	8d	Common	N	6	12	Υ	3

Legend:

Grp - Wall Design Group number, used to reference wall in other tables (created by program)

Surf – Exterior or interior surface when applied to exterior wall

Ratng - Span rating, see SDPWS Table C4.2.3C

Thick - Nominal panel thickness

GU - Gypsum underlay thickness

Ply – Number of plies (or layers) in construction of plywood sheets

Or - Orientation of longer dimension of sheathing panels or lumber planks. Dbl. = Double diagonal.

Gvtv - Shear stiffness in lb/in. of depth from SDPWS Tables C4.2.3A-B

Type - Fastener type from SDPWS Tables 4.3A-D:

Common: common wire nail; Box: galvanized box nail; Casing: casing nail; Roof: galvanized roofing nail; Cooler: cooler nail; WBoard: wallboard nail; Screw: drywall screw; Gauge: nail measured by gauge; Galv: galvanized gauge nail; GWB: Gypsum wallboard blued nail

Size - From Tables 4.3A-D and Table A1; shown in Wall Input fastener dropdown

Common nails: $6d = 0.113 \times 2$ ", $8d = 0.131 \times 2.5$ ", $10d = 0.148 \times 3$ ", $12d = 0.148 \times 3.5$ "

Box or casing nails: $6d = 0.099 \times 2$ ", $8d = 0.113 \times 2.5$ ", $10d = 0.128 \times 3$ ", $12d = 0.126 \times 3.5$ "

Gauge, roofing and GWB nails: 13 ga = 0.92" x 1-1/8"; 11 ga = 0.120" x 1-1/8" (GWB nail for gypsum lath & plaster), 1-1/4" (gyp. L&P), 1-1/2" (wire lath & plaster, 1/2" fiberboard, 1/2" GWB), 1-3/4" (GSB, 5/8" GWB, 25/32" fiberboard, 2-ply GWB base), 2-3/8" (2-ply GWB face)

Cooler or wallboard nail: 5d = .086" x 1-5/8"; 6d = .092" x 1-7/8"; 8d = .113" x 2-3/8"; 6/8d = .6d base ply, 8d face ply for 2-ply GWB.

Drywall screws: No. 6, 1-1/4" long.

RS – Ring-shank nails (non-shearwalls only), with increased withdrawal capacity as per NDS 12.2.3.2.

Eg – Panel edge fastener spacing. For lumber sheathing, no. of nails per board at shear wall boundary. For 2-ply GWB, spacing of all nails in face ply.

Fd – Field spacing interior to panels. For lumber sheathing, no. of nails per board at interior studs. For 2-ply GWB, spacing of all nails in face ply.

Bk – Sheathing is nailed to blocking at all panel edges; Y(es) or N(o)

Apply Notes - Notes below table legend which apply to sheathing side

Notes:

- 2. Framing at adjoining panel edges must be 3" nominal or wider with staggered nailing according to SDPWS 4.3.7.1 (5)
- 3. Shear capacity for current design has been increased to the value for 15/32" sheathing with same nailing because stud spacing is 16" max. or panel orientation is horizontal. See SDPWS Table 4.3A Note 2.

FRAMING MATERIALS and STANDARD WALL by WALL GROUP

Wall	Species	Grade	b	d	Spcg	SG	Е	Fcp	Standard Wall
Grp			in	in	in		psi^6		
1	D.Fir-L	No.2	1.50	5.50	16	0.50	1.60	625	
2	D.Fir-L	No.2	1.50	5.50	16	0.50	1.60	625	

Legend:

Wall Grp - Wall Design Group

b – Stud breadth (thickness)

d – Stud depth (width)

Spcg - Maximum on-centre spacing of studs for design, actual spacing may be less.

SG - Specific gravity

E - Modulus of elasticity

Standard Wall - Standard wall designed as group.

Fcp - Compressive strength perpendicular to grain

Notes:

Check manufacture requirements for stud size, grade and specific gravity (G) for all shearwall hold-downs.

The following factors are applied to Fcp for compressive design and deformation under wall segment end studs:

Bearing area factor Cb from NDS 3.10.4, under window openings.

Jan. 18, 2024 15:06:26

Loads

DEAD LOADS (for hold-down calculations)

Shear	Level	Profile	Tributary	Location	on [ft]	Mag [lbs,p	osf,psi]
Line			Width [ft]	Start	End	Start	End
A	1	Line		0.00	23.50	90.0	
A	1	Area	4.00	0.00	23.50	15.0	
В	1	Line		-31.00	-19.00	90.0	
В	1	Area	4.00	-31.00	-19.00	15.0	
В	1	Line		-19.00	23.50	90.0	
В	1	Line		-19.00	0.00	90.0	
В	1	Area	17.00	-19.00	23.50	15.0	
C	1	Line		-19.00	9.00	90.0	
C	1	Area	19.00	-19.00	9.00	15.0	
D	1	Line		-31.00	-19.00	90.0	
D	1	Area	19.00	-31.00	-19.00	15.0	
D	1	Line		9.00	23.50	90.0	
D	1	Area	19.00	9.00	23.50	15.0	
1	1	Line		22.00	58.00	90.0	
1	1	Area	4.00	22.00	58.00	15.0	
2	1	Line		22.00	24.00	90.0	
2	1	Line		52.00	58.00	90.0	
3	1	Line		0.00	24.00	90.0	
3	1	Area	13.50	0.00	24.00	15.0	
4	1	Line		52.00	58.00	90.0	
5	1	Line		0.00	58.00	90.0	
5	1	Area	4.00	0.00	58.00	15.0	

Nisqually Spec G Lateral.wsw

Jan. 18, 2024 15:06:26

Design Summary

SHEARWALL DESIGN

Wind Shear Loads, Flexible Diaphragm All shearwalls have sufficient design capacity.

Seismic Loads, Flexible Diaphragm
All shearwalls have sufficient design capacity.

HOLD-DOWN DESIGN

Wind Loads, Flexible Diaphragm
All hold-downs have sufficient design capacity.

Seismic Loads, Flexible Diaphragm
All hold-downs have sufficient design capacity.

COMPRESSION FORCE DESIGN

Wind Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

Seismic Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

Refer to the Deflection table for possible issues regarding fastener slippage (SDPWS Table C4.2.3D) for walls that otherwise pass.

Jan. 18, 2024 15:06:26

Flexible Diaphragm Wind Design ASCE 7 Directional (All Heights) Loads

SHEAR RESULTS

N-S	W	For	ASD S	Shear Force	[plf]	Asp	-Cub		Allo	owable S	hear [plf]		Resp.
Shearlines	Gp	Dir	V	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
Line 1	-													
Level 1														
Ln1, Lev1	2	S->N	69.9	71.6	2323	_	1.0	_	356	0.98		356	11835	0.20
,	2	N->S	66.2	67.9	2203	_	1.0	_	356	0.98		356	11835	0.19
Line 3														
Ln3, Lev1	_	S->N	_	_	4222	_	_	_	-	_		-	8669	-
	_	N->S	_	_	3556	_	_	_	_	_		_	8669	-
Wall 3-1	2^	S->N	177.8	_	4222	-	1.0	_	365	_		365	8669	0.49
	2	N->S	149.7	_	3556	-	1.0	-	365	-		365	8669	0.41
Line 5														
Ln5, Lev1	2	S->N	40.2	45.6	1950	-	1.0	_	322	0.88		322	15595	0.13
	2	N->S	34.2	38.8	1659	-	1.0	-	322	0.88		322	15595	0.11
E-W	W	For	ASD S	Shear Force	[plf]	Asp	-Cub		Allo	owable S	Shear [plf]		Resp.
Shearlines	Gp	Dir	V	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
Line A	-													
Level 1														
LnA, Lev1	_	W->E	_	_	1432	_	_	_	_	_		_	1790	_
,	_	E->W	_	_	1429	_	_	_	_	_		_	1790	_
Wall A-1	1^	W->E	_	_	1432	_	1.0	_	532	_		_	1790	_
	1	E->W	_	_	1429	_	1.0	_	532	_		_	1790	_
Seg. 1	_	W->E	260.3	_	716	_	.61	_	325	_		325	895	0.80
	_	E->W	259.8	_	715	_	.61	_	325	_		325	895	0.80
Seg. 2	_	W->E	260.3	_	716	_	.61	_	325	_		325	895	0.80
223. =	_	E->W	259.8	_	715	_	.61	_	325	_		325	895	0.80
Line B														
LnB, Lev1	2	W->E	122.1	157.2	3876	_	.97	_	283	0.80		283	8999	0.43
2112 / 2012	2	E->W	121.9	156.9	3869	_	.97	_	283	0.80		283	8999	0.43
Line D	_			130.3	3003		• • •		200	0.00		200	0,7,7	0.15
LnD, Lev1	_	Both	_	_	2220	_	_	_	_	_		_	13401	_
Wall D-1	1	Both	_	_	1230	_	1.0	_	532	_		_	6390	_
Seg. 1	_	Both	175.7	11.0	659	_	1.0	_	532	_		532	1997	0.33
Open. 1	_	Both		230.6	1153	_	_	_	532	_		532	2663	0.43
Seg. 2	_	Both	175.7	11.0	571	_	1.0	_	532	_		532	1731	0.33
Wall D-2	1	Both	-		991	_	1.0	_	532	_		-	7011	-
Seg. 1	_	Both	247.7	-290.4	495	_	.67	_	355	_		355	710	
Open. 1	_	Both	247.7	205.0	2152	_	- 0 /	_	532	_		532	5591	0.70
Seg. 2	_	Both	- 247.7	-290.4	495	_	.67	_	355	_		355	710	0.30
seg. ∠	_	POCII	241.1	-250.4	495	_	. 0 /	-	333	_		333	/10	0.70

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir - Direction of wind force along shearline.

vmax/vff - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers.

V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.5.3. For segment or FTAO pier: Aspect ratio factor from SDPWS 4.3.5.5.1. For perforated wall: Either Cub or sum bi / FHS, where bi is segment length adjusted per SDPWS 4.3.3.4.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "S" indicates that the seismic design criterion was critical in selecting wall.

Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

v - Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

Hold-Down and Compression Design (flexible wind design)

Level 1					٦ -	Tensile Ho	ld-down			
Line-		Locati	ion [ft]	Load	or Com	pressive S	Stud Force [lbs]		Cap	Crit
Wall	Posit'n	X	Υ	Case	Shear	Dead	Uplift Cmb'd	Hold-down	[lbs]	Resp.
Line 1										
1-1	L End	-31.00	22.00	1	-842	2700	3542	Compression	10312	0.34
1-1	R End	-31.00	58.00	1	-888	2700	3588	Compression	10312	0.35
Line 3										
3-1	L End	0.00	0.00	1	-1362	3473	4835	Compression	10312	0.47
3-1	R End	0.00	23.50	1	-1617	3473	5090	Compression	10312	0.49
Line 5										
5-1	L End	23.50	0.00	1	-431	4350	4781	Compression	10312	0.46
5-1	R End	23.50	58.00	1	-506	4350	4856	Compression	10312	0.47
Line A										
A-1	L End	0.00	0.00	1	2577	124	2454	HDU2-SDS	3075	0.80
A-1	L End	0.00	0.00	1	-2572	206	2779	Compression	10312	0.27
A-1	L Op 1	2.50	0.00	1	2572	923	1650	HDU2-SDS	3075	0.54
A-1	L Op 1	2.50	0.00	1	-2577	1538	4115	Compression	10312	0.40
A-1	R Op 1	20.50	0.00	1	2577	923	1655		3075	0.54
A-1	R Op 1	20.50	0.00	1	-2572	1538	4110	Compression	10312	0.40
A-1	R End	23.00	0.00	1	2572	124	2449	HDU2-SDS	3075	0.80
A-1	R End	23.00	0.00	1	-2577	206	2784	Compression	10312	0.27
Line B										
B-1	L End	-31.00	22.00	1	0	263	262	Compression		-
B-1	L Op 1	-27.50	22.00	1	0	656	656	Compression		-
B-1	R Op 1	-22.00	22.00	1	0	619	619	Compression		-
B-1	R End	-19.50	22.00	1	0	225	225	Compression		_
B-3	L End	-19.00	24.50	1	-1424	9270	10693	Compression	25781	0.41
B-2	L Op 2	-16.50	24.00	1	0	1686	1686	Compression		_
B-2	R Op 2	-11.50	24.00	1	0	2447	2447	Compression		_
B-2	L Op 2	-5.50	24.00	1	0	2012	2012	Compression		_
	V Elem	-2.00	24.00	1	0	1142	1142	Compression		
	V Elem	-0.00	24.00	1	0	489	489	Compression		
B-3	R End	23.00	24.50	1	-1426	7724	9150	Compression	25781	0.35
Line D	_									
D-1	L End	-31.00	58.00	1	-942	2250	3192		10312	0.31
D-1	R End	-19.00	58.00	1	-942	2250	3192		11601	0.28
D-2	L End	9.00	58.00	1	-626	2719	3344		10312	0.32
D-2	R End	23.00	58.00	1	-626	2719	3344	Compression	11601	0.29

Legend:

Line-Wall:

At wall or opening - Shearline and wall number

At vertical element - Shearline

Posit'n – Position of stud pack that hold-down is attached to or which is applying compression force:

V Elem - Vertical element: column or strengthened studs required where not at wall end or opening

L or R End - At left or right wall end

L or R Op n – At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location - Co-ordinates in Plan View

Load Case - Results are for critical load case:

ASCE 7 All Heights: Case 1 or 2 from Fig. 27.3-8

ASCE 7 Low-rise: Windward corner(s) and Case A or B from Fig. 28.3-1

ASCE 7 Minimum loads (27.1.5 / 28.3.4): "Min"

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = $V \times h / beff$ from SDPWS Eqn. 4.3-7; V = force on segment, ASD-factored by 0.60; h = wall height, beff = wall segment length – (tension stud pack width + hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = $V \times h / Co$ sum (bi) from SDPWS Eqn. 4.3-8.

Dead – Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Uplift - Uplift wind load component, factored for ASD by 0.60

Cmb'd – Sum of ASD-factored overturning, dead and uplift forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down - Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details

Crit. Resp. - Critical Response = Combined ASD force / Allowable ASD tension load

Notes:

HDU2-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5" : Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table

Nisqually Spec G Lateral.wsw

Jan. 18, 2024 15:06:26

Flexible Diaphragm Seismic Design

SEISMIC INFORMATION

Level	Mass	Area	Story Shea	ır Fx [lbs]	Shear Resis	stance [lbs]	Diaphragm Force [lbs]					
	[lbs]	[sq.ft]	E-W	N-S	E-W	N-S	E	E-W		N-S		
							Fpx	Design	Fpx	Design		
1	59787	2257.5	5709	5709	17279	25785	7421	7421	7421	7421		
All	59787	-	8155	8155	-	-	-	-	-	-		

Legend:

Mass – Sum of all generated and input building masses on level = wx in ASCE 7 Eqn. 12.8-12.

Story Shear – Total ASD-factored shear force induced at level x from Eqn. 12.8-11.

Shear Resistance – Lateral design strength of all shear-resisting elements on story, for use in weak story evaluation (4.1.8).

Diaphragm Force – used by Shearwalls only for drag strut forces, as per Exception to 12.10.2.1.

Fpx - Minimum ASD-factored force for diaphragm design from Eqns. 12.10-1, -2, and -3.

Design = The greater of the story shear and Fpx + transfer forces from discontinuous shearlines, factored by overstrength (omega) as per 12.10.1.1. Omega = 2.5 as per 12.2-1.

Redundancy Factor p (rho):

E-W 1.00, N-S 1.00

Automatically calculated according to ASCE 7 12.3.4.2.

Vertical Earthquake Load Ev

Ev = 0.2 Sds D; Sds = 0.89; Ev = 0.177 D unfactored; 0.124 D factored; total dead load factor: 0.6 - 0.124 = 0.476 tension, 1.0 + 0.124 = 1.124 compression.

SHEAR RESULTS (flexible seismic design)

N-S	W W	For		Shear Force	[nlf]	Δen	-Cub		Δ11/	owable S	hear	· [nlf]		Resp.
Shearlines	Gp	Dir	V 43D (vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	C		V [lbs]	Ratio
Line 1	Gp	ווט	v	VIIIax/VII	A [ID2]		LAL	IIIL	LAL			Cilib	V [ISS]	Natio
Level 1														
Ln1, Lev1	2	Both	42.4	43.5	1410	_	1.0	_	254	0.98		254	8454	0.17
Line 3	4	BUCII	42.4	43.3	1410		1.0		234	0.90		234	0434	0.17
Ln3, Lev1	_	Both	_	_	2562	_	_	_	_	_		_	6192	_
Wall 3-1	2	Both	107.9	_	2562	_	1.0	_	261	_		261	6192	0.41
Line 5	2	DOCII	107.9		2302		1.0		201			201	0102	0.41
Ln5, Lev1	2	Both	35.8	40.7	1737	_	1.0	_	230	0.88		230	11140	0.16
HIIS, HEVI	2	DOCII	33.0	10.7	1/5/		1.0		250	0.00		250	11110	0.10
E-W	W	For	ASD S	Shear Force	[plf]	Asp	-Cub		Allo	owable S	hear	r [plf]		Resp.
Shearlines	Gp	Dir	V	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
Line A	-													
Level 1														
LnA, Lev1	-	Both	_	_	869	_	_	_	_	_		_	1278	_
Wall A-1	1	Both	_	_	869	_	1.0	_	380	_		_	1278	-
Seg. 1	-	Both	158.0	-	435	-	.61	-	232	-		232	639	0.68
Seg. 2	-	Both	158.0	-	435	-	.61	-	232	-		232	639	0.68
Line B														
LnB, Lev1	2	Both	90.2	116.1	2863	_	.97	_	202	0.80		202	6428	0.45
Line D														
LnD, Lev1	_	Both	_	_	1977	_	-	_	_	_		_	9572	-
Wall D-1	1	Both	-	-	1095	-	1.0	-	380	-		-	4564	-
Seg. 1	-	Both	156.4	9.8	586	-	1.0	-	380	-		380	1426	0.41
Open. 1	-	Both	-	205.3	1026	-	-	-	380	-		380	1902	0.54
Seg. 2	-	Both	156.4	9.8	508	-	1.0	-	380	-		380	1236	0.41
Wall D-2	1	Both	-	-	882	-	1.0	-	380	-		-	5008	-
Seg. 1	-	Both	220.5	-258.5	441	-	.67	-	254	-		254	507	0.87
Open. 1	-	Both	_	182.5	1916	-	-	-	380	-		380	3994	0.48
Seg. 2	-	Both	220.5	-258.5	441	-	.67	-	254	-		254	507	0.87

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir - Direction of seismic force along shearline.

v – Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers.

V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.5.3. For segment or FTAO pier: Aspect ratio factor from SDPWS 4.3.5.5.1. For perforated wall: Either Cub or sum bi / FHS, where bi is segment length adjusted per SDPWS 4.3.3.4.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4. Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "W" indicates that the wind design criterion was critical in selecting wall.

Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Hold-Down and Compression Design (flexible seismic design)

Hold-Down and Compression Design (flexible seismic design) Level 1 Tensile Hold-down										
									Сар	Crit
Line-		Location [ft]		or Compressive Stud Force [lbs]			-			
Wall	Posit'n	X	Υ	Shear	Dead	Ev	Cmb'd	Hold-down	[lbs]	Resp.
Line 1										
1-1	L End	-31.00	22.00	-539	2700	335	3574	Compression	10312	0.35
1-1	R End	-31.00	58.00	-539	2700	335	3574	Compression	10312	0.35
Line 3										
3-1	L End	0.00	0.00	-981	3473	431	4886	Compression	10312	0.47
3-1	R End	0.00	23.50	-981	3473	431	4886	Compression	10312	0.47
Line 5										
5-1	L End	23.50	0.00	-451	4350	540	5341	Compression	10312	0.52
5-1	R End	23.50	58.00	-451	4350	540	5341	Compression	10312	0.52
Line A										
A-1	L End	0.00	0.00	1564	124	26	1466	HDU2-SDS	3075	0.48
A-1	L End	0.00	0.00	-1564	206	26	1796	Compression	10312	0.17
A-1	L Op 1	2.50	0.00	1564	923	191	833	HDU2-SDS	3075	0.27
A-1	L Op 1	2.50	0.00	-1564	1538	191	3292	Compression	10312	0.32
A-1	R Op 1	20.50	0.00	1564	923	191	833	HDU2-SDS	3075	0.27
A-1	R Op 1	20.50	0.00	-1564	1538	191	3292	Compression	10312	0.32
A-1	R End	23.00	0.00	1564	124	26	1466	HDU2-SDS	3075	0.48
A-1	R End	23.00	0.00	-1564	206	26	1796	Compression	10312	0.17
Line B										
B-1	L End	-31.00	22.00	0	263	33	295	Compression		-
B-1	L Op 1	-27.50	22.00	0	656	81	738	Compression		
B-1	R Op 1	-22.00	22.00	0	619	77	695	Compression		
B-1	R End	-19.50	22.00	0	225	28	253	Compression		-
B-3	L End	-19.00	24.50	-1053	9270	1151	11474	Compression	25781	0.45
B-2	L Op 2	-16.50	24.00	0	1686	209	1895	Compression		-
B-2	R Op 2	-11.50	24.00	0	2447	304	2751	Compression		_
B-2	L Op 2	-5.50	24.00	0	2012	250	2262	Compression		_
	V Elem	-2.00	24.00	0	1142	142	1284	Compression		
	V Elem	-0.00	24.00	0	489	61	550	Compression		
B-3	R End	23.00	24.50	-1053	7724	959	9736	Compression	25781	0.38
Line D										
D-1	L End	-31.00	58.00	-838	2250	279	3368	Compression	10312	0.33
D-1	R End	-19.00	58.00	-838	2250	279	3368	Compression	11601	0.29
D-2	L End	9.00	58.00	-557	2719	337	3613	Compression	10312	0.35
D-2	R End	23.00	58.00	-557	2719	337	3613	Compression	11601	0.31
								_		

Legend:

Line-Wall:

At wall or opening - Shearline and wall number

At vertical element - Shearline

Posit'n – Position of stud pack that hold-down is attached to:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

- L or R End At left or right wall end
- L or R Op n At left or right side of opening n
- t @ Op n Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location - Co-ordinates in Plan View

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = $V \times h$ / beff from SDPWS Eqn. 4.3-7; V = force on segment, ASD-factored by 0.70; h = wall height, beff = wall segment length – (tension stud pack width + hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = $V \times h$ / Co sum (bi) from SDPWS Eqn. 4.3-8.

Dead - Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Ev - Vertical seismic load effect from ASCE 7 12.4.2.2 = -0.2 Sds x ASD factor x unfactored D = 0.207 SDS x factored D. Refer to Seismic Information table for more details.

Cmb'd – Sum of ASD-factored overturning, dead and vertical seismic forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down – Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: Allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details.

Crit. Resp. - Critical Response = Combined ASD force/Allowable ASD tension load

Notes

HDU2-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5": Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Combined force from ASCE 7 2.4.1 load combination 10 = - (0.6D - 0.7Ev + 0.7Eh); Eh (from 12.4.2.1) = - shear overturning force

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS